If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-54x+44=0
a = 10; b = -54; c = +44;
Δ = b2-4ac
Δ = -542-4·10·44
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-34}{2*10}=\frac{20}{20} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+34}{2*10}=\frac{88}{20} =4+2/5 $
| 41=-5(2n-8) | | -5w+3(w+3)=11 | | 1,4x+2=7 | | 35+2x+16+4x+3=360 | | 11+22x=9+30 | | |6(5j-3)+2|=4 | | 12+x+25=554 | | m–7=2(-3m–6) | | (X+3)^2=(x-3)+16(x-3) | | 11=22x=9+30 | | x+(.03x)=100 | | y-5=y=6y-90 | | 2v+36=-2(v-6) | | 4x+3-9x+5=2x-13 | | -5/6+x=-2.1 | | -8x-12=2x+11 | | 4+x+2÷3=-8 | | −3x2=(5x−4x2−6) | | 1/4=x/3 | | 2z+1=8z-11 | | 6z–38=-5z+41=-10z+78 | | 6z-38=-5z+41=-10z+78 | | 6p+3=4p+9 | | x/4.1=(-6) | | 7x^2-7x-22=0 | | 35/7x=15/28 | | 35/7n=15/28 | | 3x+56+25=180 | | c+4=2(c–5) | | 5h-5=3h+9 | | 4g+9=8g-7 | | |e+4(e+3)|=17 |